Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than presently accepted values.

نویسندگان

  • Julie Furne
  • Aalia Saeed
  • Michael D Levitt
چکیده

Hydrogen sulfide is gaining acceptance as an endogenously produced modulator of tissue function. The present paradigm of H(2)S (diprotonated, gaseous form of hydrogen sulfide) as a tissue messenger consists of H(2)S being released from the desulfhydration of l-cysteine at a rate sufficient to maintain whole tissue hydrogen sulfide concentrations of 30 microM to >100 microM, and these tissue concentrations serve a messenger function. Utilizing physiological concentrations of l-cysteine and aerobic conditions, we found that catabolism of hydrogen sulfide by mouse liver and brain homogenates exceeded the rate of enzymatic release of this compound such that measureable hydrogen sulfide release was less with tissue-containing vs. tissue-free buffers. Analyses of the gas space over rapidly homogenized mouse brain and liver indicated that in situ tissue hydrogen sulfide concentrations were only about 15 nM. Human alveolar air measurements indicated negligible free H(2)S concentrations in blood. We conclude rapid tissue catabolism of hydrogen sulfide maintains whole tissue brain and liver concentrations of free hydrogen sulfide that are three orders of magnitude less than conventionally accepted values and only 1/5,000 of the hydrogen sulfide concentration (100 microM) required to alter cellular function in vitro. For hydrogen sulfide to serve as an endogenously produced messenger, tissue production and catabolism must result in intracellular microenvironments with a sufficiently high hydrogen sulfide concentration to activate a local signaling mechanism, while whole tissue concentrations remain very low.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Thyrotoxicosis on Gene Expression of Hydrogen Sulfide-producing Enzymes in Epididymal Adipose Tissue of Male Rats

Introduction: Thyroid hormones are involved in the regulation of hydrogen sulfide (H2S) biosynthesis. The aim of this study is to determine effects of thyrotoxicosis on H2S levels and mRNA expression of cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST) in the adipose tissue of rat. Materials and Methods: Male rats were divided into the ...

متن کامل

New method for quantification of gasotransmitter hydrogen sulfide in biological matrices by LC-MS/MS

Hydrogen sulfide exists widely in mammalian tissues and plays a vital role in physiological and pathophysiological processes. However, striking differences with orders of magnitude were observed for the detected hydrogen sulfide concentrations in biological matrices among different measurements in literature, which lead to the uncertainty for examination the biological relevance of hydrogen sul...

متن کامل

Influence of pH on microbial hydrogen metabolism in diverse sedimentary ecosystems.

Hydrogen transformation kinetic parameters were measured in sediments from anaerobic systems covering a wide range of environmental pH values to assess the influence of pH on hydrogen metabolism. The concentrations of dissolved hydrogen were measured and hydrogen transformation kinetics of the sediments were monitored in the laboratory by monitoring hydrogen consumption progress curves. The hyd...

متن کامل

Endogenous H2S in hemorrhagic shock: innocent bystander or central player?

The role of the gaseous mediator hydrogen sulfide (H2S) in hemorrhagic shock is still a matter of debate. This debate is emphasized by the fact that available literature data on blood and tissue H2S concentrations vary by three orders of magnitude, both under physiological conditions as well as during stress states. Therefore, in a rat model of unresuscitated, lethal hemorrhagic shock, Van de L...

متن کامل

Reducing the effect of salinity and lead on garlic (Allium sativum) seedling roots by improving oxidant defence under selenium and hydrogen sulfide

Selenium and hydrogen sulfide can alleviate the adverse effects of oxidative stress on plants by improving the oxidative defense system. In order to improve the oxidative defense system of garlic under lead and salinity stress by selenium and hydrogen sulfide, a factorial experiment was carried out using selenium and hydrogen sulfide in a completely randomized design with three replications. Ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 295 5  شماره 

صفحات  -

تاریخ انتشار 2008